Geeks_Z の Blog Geeks_Z の Blog
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)

Geeks_Z

AI小学生
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)
  • 线性代数

  • 概率论与数理统计

    • 事件与概率
    • 随机变量及其分布
    • 随机变量的数字特征
      • 三、随机变量的数字特征
        • 3.1 数学期望(均值)与中位数
        • 3.2 方差与矩
        • 3.3 协方差与相关系数
        • 3.4 大数定理和中心极限定理
  • 矩阵

  • 分布

  • 数学笔记
  • 概率论与数理统计
Geeks_Z
2022-12-26
目录

随机变量的数字特征

三、随机变量的数字特征

3.1 数学期望(均值)与中位数

  1. 数学期望

    • 定义:设随机变量X 取有限个可能值a1,...,am,其概率分布为P(X=ai)=pi(i=1,...,m).则X 数学期望记作E(X)∗ E(X),定义为E(X)=a1p1+a2p2+...+ampm.数学期望也常称为”均值“,即指以概率为权的加权平均。

    • 离散型变量的数学期望:E(X)=∑i=1∞aipi.(当级数绝对收敛,即∑i=1∞|ai|pi<∞)

    • 连续型变量的数学期望:E(X)=∫−∞∞xf(x)dx.(当∫−∞∞|x|f(x)dx<∞)

    • 常见分布的数学期望:

      • 泊松分布:E(X)=λ.

      • 二项分布:E(X)=np.

      • 均匀分布:E(X)=12(a+b).

      • 指数分布:E(X)=λ−1.

      • 正态分布:E(X)=μ.

      • 卡方分布:E(X)=n.

      • t 布:E(X)=0(n>1).

      • F 布:E(X)=n/(n−2)(n>2).

    • 性质:

      • 若干个随机变量之和的期望等于各变量的期望值和,即
      E(X1+X2+...+Xn)=E(X1)+E(X2)+...+E(Xn).
      • 若干个独立随机变量之积的期望等于各变量的期望之积,即
      E(X1X2...Xn)=E(X1)E(X2)...E(Xn).
      • 设随机变量X 离散型,有分布P(X=ai)=pi(i=1,2,...);或者为连续型,有概率密度函数f(x).则
      当时或当时E(g(x))=∑ig(ai)pi(当∑i|g(ai)|pi<∞时)或E(g(x))=∫−∞∞g(x)f(x)dx(当∫−∞∞|g(x)|f(x)dx<∞时)
      • 若c 常数,则E(cX)=cE(X).
  2. 条件数学期望

    • 定义:随机变量 Y 的条件期望就是它在给定的某种附加条件下的数学期望。E(Y|x)=∫−∞∞yf(y|x)dy.它反映了随着X 值x 变化Y 平均变化的情况如何。在统计上,常把条件期望E(Y|x) 为x 函数,称为Y X 回归函数。
    • 性质:
      • E(Y)=∫−∞∞E(Y|x)fX(x)dx.
      • E(Y)=E[E(Y|X)].
  3. 中位数

    • 定义:设连续型随机变量X 分布函数为F(x),则满足条件P(X≤m)=F(m)=1/2 数m 为X 分布F 中位数。即m 个点把X 分布从概率上一切两半。
    • 性质:
      • 与期望值相比,中位数受特大值或特小值影响很小,而期望不然。
      • 中位数可能不唯一,且在某些离散型情况下,中位数不能达到一分两半的效果。

3.2 方差与矩

  1. 方差与标准差

    • 定义:设X 随机变量,分布为F,则Var(X)=E(X−EX)2 为X(或分布F)的方差,其平方根Var(X)(取正值)称为X(或分布F)的标准差。
    • 常见分布的方差:
      • 泊松分布:Var(X)=λ.
      • 二项分布:Var(X)=np(1−p).
      • 正态分布:Var(X)=σ2.
      • 指数分布:Var(X)=1/λ2.
      • 均匀分布:Var(X)=(b−a)2/12.
      • 卡方分布:Var(X)=2n.
      • t 布:Var(X)=n/(n−2).
      • F 布:Var(X)=2n2(m+n−2)/[m(n−2)2(n−4)](n>4).
    • 性质:
      • Var(X)=E(X2)−(EX)2.
      • 常数的方差为 0,即Var(c)=0.
      • 若c 常数,则Var(X+c)=Var(X).
      • 若c 常数,则Var(cX)=c2Var(X).
      • 独立随机变量和的方差等于各变量方差和,即Var(X1+...+Xn)=Var(X1)+...+Var(Xn).
  2. 矩

    • 定义:设X 随机变量,c 常数,k 正整数。则量E[(X−c)k] 为X 于c 的k 矩。特别地,有两种重要的情况:

      (1) c=0 .这时ak=E(Xk) 为X k 原点矩。

      (2)c=E(X).这时μk=E[(X−EX)k] 为X k 中心矩。

      一阶原点矩就是期望,一阶中心距μ1=0,二阶中心距μ2 是X 方差Var(X).

    • 两种重要应用:

      • 偏度系数:β1=μ3/μ23/2.衡量概率分布函数f(x) 否关于均值对称。如果β>0,则称分布为正偏或右偏;如果β<0,则称分布为负偏或左偏;如果β=0,则对称。(注:μ23/2 标准差的三次方,可将μ3 放到一次因次)
      • 峰度系数:β2=μ4/μ22.衡量概率分布函数f(x) 均值附近的陡峭程度。若X 正态分布N(μ,σ2),则β2=3.(注:μ22 标准差的四次方,将μ4 放到一次因次。为了迁就正态分布,也常定义μ4/μ22−3 峰度系数,以使正态分布的峰度系数为 0)

3.3 协方差与相关系数

  两者都反映了随机变量之间的关系。

  1. 协方差(Covariance)

    • 定义:称E[(X−m1)(Y−m2)] X,Y 协方差,并记为Cov(X,Y).
    • 性质:
      • Cov(X,Y) X,Y 次序无关,即Cov(X,Y)=Cov(Y,X).
      • Cov(c1X+c2,c3Y+c4)=c1c3Cov(X,Y).
      • Cov(X,Y)=E(XY)−E(X)E(Y).
      • 若X,Y 立,则Cov(X,Y)=0.
      • [Cov(X,Y)]2≤σ12σ22.等号当且仅当X,Y 间有严格线性关系(Y=a+bX)时成立。

    注:协方差的结果受随机变量量纲影响。

  2. 相关系数(Correlation coefficient)

    • 定义:称Cov(X,Y)/(σ1σ2) X,Y 相关系数,并记为Corr(X,Y).
    • 性质:
      • 若X,Y 立,则Corr(X,Y)=0.
      • −1≤Corr(X,Y)≤1,或|Corr(X,Y)≤1|,等号当且仅当X Y 严格线性关系时达到。当Corr(X,Y)=0 ,推出X,Y 线性相关。

    注:相关系数常称为“线性相关系数”,实际上相关系数并不是刻画了X,Y 间消除量纲后“一般”关系的程度,而只是“线性关系的程度”。即使X Y 某种严格的函数关系但非线性关系,|Corr(X,Y)| 仅不必为 1,还可以为 0.

3.4 大数定理和中心极限定理

  1. 大数定理

    “大数”的意思,就是指涉及大量数目的观察值Xi,它表明这种定理中指出的现象只有在大量次数的试验和观察之下才能成立。

    • 定义:设X1,X2,...,Xn,... 独立同分布的随机变量,记它们的公共均值为a.又设它们的方差存在并记为σ2.则对任意给定的ε>0,有limn→∞P(|X¯n−a|≥ε)=0.(该式表明,当n 大时,X¯n 近a)
  2. 中心极限定理

    即和的分布收敛于正态分布。

    • 定义:设X1,X2,...,Xn 独立同分布的随机变量,E(Xi)=a,Var(Xi)=σ2(0<σ2<∞).则对任何实数x,有limn→∞P(1nσ(X1+...+Xn−na)≤x)=Φ(x).(Φ(x) 标准正态分布N(0,1) 分布函数)

    • 特例:设X1,X2,...,Xn 立同分布,Xi 布是P(Xi=1)=p,P(Xi=0)=1−p(0<p<1).则对任何实数x,有limn→∞P(1np(1−p)(X1+...+Xn−np)≤x)=Φ(x).

      注:如果t1,t2 两个正整数,t1<t2.则当n 当大时,近似地有

P(t1≤X1+...+Xn≤t2)≈Φ(y2)−Φ(y1),

其中

yi=(ti−np)/sqrtnp(1−p)(i=1,2).

若把y1,y2 正为

y1=(t1−12−np)/np(1−p),y2=(t2−12−np)/np(1−p)

在应用上式,则一般可提高精度。

#概率论与数理统计
上次更新: 2025/06/25, 11:25:50
随机变量及其分布
理解矩阵-孟岩

← 随机变量及其分布 理解矩阵-孟岩→

最近更新
01
帮助信息查看
06-08
02
常用命令
06-08
03
学习资源
06-07
更多文章>
Theme by Vdoing | Copyright © 2022-2025 Geeks_Z | MIT License
京公网安备 11010802040735号 | 京ICP备2022029989号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式