Geeks_Z の Blog Geeks_Z の Blog
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)

Geeks_Z

AI小学生
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)
  • 线性代数

    • 线性代数知识点总结
    • 方程组的几何解释
    • 矩阵消元
    • 乘法和逆矩阵
    • 矩阵的LU分解
    • 转换、置换、向量空间R
    • 列空间和零空间
    • 求解Ax=0主变量——特解
    • 求解Ax=b 可解性和解的结构
    • 线性相关性、基、维数
    • 四个基本子空间
    • 矩阵空间、秩1矩阵和小世界图
    • 图和网络
    • 正交向量与子空间
    • 子空间投影
    • 投影矩阵和最小二乘
    • 正交矩阵和Gram-Schmidt正交化法
    • 行列式及其性质
    • 行列式公式和代数余子式
    • 克拉默法则、逆矩阵、体积
    • 特征值和特征向量
    • 对角化和$A$的幂
    • 微分方程
    • 马尔科夫矩阵、傅里叶级数
    • 对称矩阵及正定性
    • 对称矩阵及正定性
    • 复数矩阵和快速傅里叶变换
    • 正定矩阵和最小值
    • 相似矩阵和若尔当形
    • 奇异值分解
    • 线性变换及对应矩阵
    • 基变换和图像压缩
    • 左右逆和伪逆
  • 概率论与数理统计

  • 矩阵

  • 分布

  • 数学笔记
  • 线性代数
Geeks_Z
2024-05-01

线性相关性、基、维数

v1,v2,⋯,vn是m×n矩阵A的列向量:

如果A零空间中有且仅有0向量,则各向量线性无关,rank(A)=n。

如果存在非零向量c使得Ac=0,则存在线性相关向量,rank(A)<n。

向量空间S中的一组基(basis),具有两个性质:

  1. 他们线性无关;
  2. 他们可以生成S。

对于向量空间Rn,如果n个向量组成的矩阵为可逆矩阵,则这n个向量为该空间的一组基,而数字n就是该空间的维数(dimension)。

举例: A=[123111211231] ,A的列向量线性相关,其零空间中有非零向量,所以主元存在的列数列空间维数rank(A)=2=主元存在的列数=列空间维数。

可以很容易的求得Ax=0的两个解,如 x1=[−1−110],x2=[−1001],根据前几讲,我们知道特解的个数就是自由变量的个数,所以自由变量存在的列数零空间维数n−rank(A)=2=自由变量存在的列数=零空间维数

我们得到:列空间维数dimC(A)=rank(A),零空间维数$

上次更新: 2025/06/25, 11:25:50
求解Ax=b 可解性和解的结构
四个基本子空间

← 求解Ax=b 可解性和解的结构 四个基本子空间→

最近更新
01
帮助信息查看
06-08
02
常用命令
06-08
03
学习资源
06-07
更多文章>
Theme by Vdoing | Copyright © 2022-2025 Geeks_Z | MIT License
京公网安备 11010802040735号 | 京ICP备2022029989号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式