基于特征的迁移学习
特征变换迁移法
目标是:如何求解特征变换
,使得特征变化后的源域和目标域的概率分布差异达到最小。 如何求解这样的特征变换?我们将特征变换法大致分为两大类别:统计特征变换和几何特征变换。其中,统计特征变换的目标是通过显式最小化源域和目标域的分布差异来进行求解;而几何特征变换的目标则是从几何分布出发,隐式地最小化二者的分布差异。
从生成对抗网络的观点来看,网络中的判别器用来判断数据来自真实图像还是噪声,当其无法分别真实图像和噪声产生的图像时,我们认为判别器学习到了领域不变的特征。这种判别器可以被看成一种隐式距离。
上次更新: 2025/04/02, 12:03:38