基于最优传输的分类损失函数
众所周知,分类任务的标准损失是交叉熵(Cross Entropy,等价于最大似然MLE,即Maximum Likelihood Estimation),它有着简单高效的特点,但在某些场景下也暴露出一些问题,如偏离评价指标、过度自信等,相应的改进工作也有很多,此前我们也介绍过一些,比如《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》 (opens new window)、《如何训练你的准确率?》 (opens new window)、《缓解交叉熵过度自信的一个简明方案》 (opens new window)等。由于LLM的训练也可以理解为逐token的分类任务,默认损失也是交叉熵,因此这些改进工作在LLM流行的今天依然有一定的价值。
在这篇文章中,我们介绍一篇名为《EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling》 (opens new window)的工作,它基于最优传输思想提出了新的改进损失函数EMO,声称能大幅提高LLM的微调效果。其中细节如何?让我们一探究竟。
概率散度
假设
如果将标签
这个形式同时适用于非one hot的标签
当
这个结果表明,我们在做MLE,或者说以交叉熵为损失时,实则就是在最小化目标分布和预测分布的KL散度。由于KL散度的一般推广是f散度(参考《f-GAN简介:GAN模型的生产车间》(opens new window) ),所以很自然想到换用其他f散度或许有改良作用。事实上,确实有不少工作是按照这个思路进行的,比如《缓解交叉熵过度自信的一个简明方案》(opens new window) 介绍的方法,其论文的出发点是“Total Variation距离”,也是f散度的一种。
最优传输
不过,每种f散度或多或少有些问题,要说概率分布之间的理想度量,当属基于最优传输思想的“推土机距离(Earth Mover's Distance,EMD)”,不了解的读者可以参考一下笔者之前写的《从Wasserstein距离、对偶理论到WGAN》(opens new window) 。
简单来说,推土机距离定义为两个分布之间的最优传输成本:
这里的
当
如果
这是一个容易计算的上界,也可以作为优化目标,式
成本函数
现在回到原论文所关心的场景——LLM的微调,包括二次预训练和微调到下游任务等。正如本文开头所述,LLM的训练可以理解为逐token的分类任务(类别即所有token),每个标签是one hot的,所以适用于式
式
这其实就是在最大化准确率的光滑近似(参考《函数光滑化杂谈:不可导函数的可导逼近》(opens new window) )。但直觉上,所有
这里的
有了成本函数后,我们就可以计算
这就是EMO(Earth Mover Distance Optimization)最终的训练损失。由于embedding_size通常远小于vocab_size,所以先算
实验效果
由于笔者对LLM的研究还处于预训练阶段,还未涉及到微调,所以暂时没有自己的实验结果,只能先跟大家一起看看原论文的实验。不得不说,原论文的实验结果还是比较惊艳的。
首先,是小模型上的继续预训练实验,相比交叉熵(MLE)的提升最多的有10个点,并且是全面SOTA:

值得一提的是,这里的评价指标是MAUVE,越大越好,它提出自《MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers》(opens new window) ,是跟人工评价最相关的自动评测指标之一。此外,对比方法的TaiLr我们曾在《缓解交叉熵过度自信的一个简明方案》(opens new window) 简单介绍过。
可能有读者想EMO更好是不是单纯因为评价指标选得好?并不是,让人意外的是,EMO训练的模型,甚至PPL都更好(PPL跟MLE更相关):

然后是将LLAMA-7B/13B微调到下游任务做Few Shot的效果,同样很出色:

最后对比了不同模型规模和数据规模的效果,显示出EMO在不同模型和数据规模上都有不错的表现:

个人思考
总的来说,原论文的“成绩单”还是非常漂亮的,值得一试。唯一的疑虑可能是原论文的实验数据量其实都不算大,不清楚进一步增大数据量后是否会缩小EMO和MLE的差距。
就笔者看来,EMO之所以能取得更好的结果,是因为它通过Embedding算相似度,来为“近义词”分配了更合理的损失,从而使得模型的学习更加合理。因为虽然形式上LLM也是分类任务,但它并不是一个简单的对与错问题,并不是说下一个预测的token跟标签token不一致,句子就不合理了,因此引入语义上的相似度来设计损失对LLM的训练是有帮助的。可以进一步猜测的是,vocab_size越大、token颗粒度越大的情况下,EMO的效果应该越好,因为vocab_size大了“近义词”就可能越多。
当然,引入语义相似度也导致了EMO不适用于从零训练,因为它需要一个训练好的LM Head作为Token Embedding。当然,一个可能的解决方案是考虑用其他方式,比如经典的Word2Vec来事先训练好Token Embedding,但这可能会有一个风险,即经典方式训练的Token Embedding是否会降低LLM能力的天花板(毕竟存在不一致性)。
此外,即便Token Embedding没问题,从零预训练时单纯用EMO可能还存在收敛过慢的问题,这是因为根据笔者在《如何训练你的准确率?》(opens new window) 的末尾提出的损失函数视角: 首先寻找评测指标的一个光滑近似,最好能表达成每个样本的期望形式,然后将错误方向的误差逐渐拉到无穷大(保证模型能更关注错误样本),但同时在正确方向保证与原始形式是一阶近似。
也就是说,为了保证(从零训练的)收敛速度,错误方向的损失最好能拉到无穷大,而EMO显然不满足这一点,因此将EMO用于从零训练的时候,大概率是EMO与MLE的某个加权组合,才能平衡收敛速度和最终效果。
文章小结
本文介绍了交叉熵损失的一个新的“替代品”——基于最优传输思想的EMO,与以往的小提升不同,EMO在LLM的微调实验中取得了较为明显的提升。