Geeks_Z の Blog Geeks_Z の Blog
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)

Geeks_Z

AI小学生
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)
  • 线性代数

    • 线性代数知识点总结
    • 方程组的几何解释
    • 矩阵消元
    • 乘法和逆矩阵
    • 矩阵的LU分解
    • 转换、置换、向量空间R
    • 列空间和零空间
    • 求解Ax=0主变量——特解
    • 求解Ax=b 可解性和解的结构
    • 线性相关性、基、维数
    • 四个基本子空间
    • 矩阵空间、秩1矩阵和小世界图
    • 图和网络
    • 正交向量与子空间
    • 子空间投影
    • 投影矩阵和最小二乘
    • 正交矩阵和Gram-Schmidt正交化法
    • 行列式及其性质
    • 行列式公式和代数余子式
    • 克拉默法则、逆矩阵、体积
    • 特征值和特征向量
    • 对角化和$A$的幂
    • 微分方程
    • 马尔科夫矩阵、傅里叶级数
    • 对称矩阵及正定性
    • 对称矩阵及正定性
    • 复数矩阵和快速傅里叶变换
    • 正定矩阵和最小值
      • 正定性的判断
    • 相似矩阵和若尔当形
    • 奇异值分解
    • 线性变换及对应矩阵
    • 基变换和图像压缩
    • 左右逆和伪逆
  • 概率论与数理统计

  • 矩阵

  • 分布

  • 数学笔记
  • 线性代数
Geeks_Z
2024-05-01
目录

正定矩阵和最小值

本讲我们会了解如何完整的测试一个矩阵是否正定,测试xTAx是否具有最小值,最后了解正定的几何意义——椭圆(ellipse)和正定性有关,双曲线(hyperbola)与正定无关。另外,本讲涉及的矩阵均为实对称矩阵。

正定性的判断

我们仍然从二阶说起,有矩阵A=[abbd],判断其正定性有以下方法:

  1. 矩阵的所有特征值大于零则矩阵正定:λ1>0,λ2>0;
  2. 矩阵的所有顺序主子阵(leading principal submatrix)的行列式(即顺序主子式,leading principal minor)大于零则矩阵正定:a>0,ac−b2>0;
  3. 矩阵消元后主元均大于零:a>0,ac−b2a>0;
  4. xTAx>0;

大多数情况下使用4来定义正定性,而用前三条来验证正定性。

来计算一个例子:A=[266?],在?处填入多少才能使矩阵正定?

  • 来试试18,此时矩阵为A=[26618],detA=0,此时的矩阵成为半正定矩阵(positive semi-definite)。矩阵奇异,其中一个特征值必为0,从迹得知另一个特征值为20。矩阵的主元只有一个,为2。

    计算xTAx,得[x1x2][26618][x1x2]=2x12+12x1x2+18x22这样我们得到了一个关于x1,x2的函数f(x1,x2)=2x12+12x1x2+18x22,这个函数不再是线性的,在本例中这是一个纯二次型(quadratic)函数,它没有线性部分、一次部分或更高次部分(Ax是线性的,但引入xT后就成为了二次型)。

    当?取18时,判定1、2、3都是“刚好不及格”。

  • 我们可以先看“一定不及格”的样子,令?=7,矩阵为A=[2667],二阶顺序主子式变为−22,显然矩阵不是正定的,此时的函数为f(x1,x2)=2x12+12x1x2+7x22,如果取x1=1,x2=−1则有f(1,−1)=2−12+7<0。

    如果我们把z=2x2+12xy+7y2放在直角坐标系中,图像过原点z(0,0)=0,当y=0或x=0或x=y时函数为开口向上的抛物线,所以函数图像在某些方向上是正值;而在某些方向上是负值,比如x=−y,所以函数图像是一个马鞍面(saddle),(0,0,0)点称为鞍点(saddle point),它在某些方向上是极大值点,而在另一些方向上是极小值点。(实际上函数图像的最佳观测方向是沿着特征向量的方向。)

  • 再来看一下“一定及格”的情形,令?=20,矩阵为A=[26620],行列式为detA=4,迹为trace(A)=22,特征向量均大于零,矩阵可以通过测试。此时的函数为f(x1,x2)=2x12+12x1x2+20x22,函数在除(0,0)外处处为正。我们来看看z=2x2+12xy+20y2的图像,式子的平方项均非负,所以需要两个平方项之和大于中间项即可,该函数的图像为抛物面(paraboloid)。在(0,0)点函数的一阶偏导数均为零,二阶偏导数均为正(马鞍面的一阶偏导数也为零,但二阶偏导数并不均为正,所以),函数在改点取极小值。

    在微积分中,一元函数取极小值需要一阶导数为零且二阶导数为正dudx=0,d2udx2>0。在线性代数中我们遇到了了多元函数f(x1,x2,⋯,xn),要取极小值需要二阶偏导数矩阵为正定矩阵。

    在本例中(即二阶情形),如果能用平方和的形式来表示函数,则很容易看出函数是否恒为正,f(x,y)=2x2+12xy+20y2=2(x+3y)2+2y2。另外,如果是上面的?=7的情形,则有f(x,y)=2(x+3y)2−11y2,如果是?=18的情形,则有f(x,y)=2(x+3y)2。

    如果令z=1,相当于使用z=1平面截取该函数图像,将得到一个椭圆曲线。另外,如果在?=7的马鞍面上截取曲线将得到一对双曲线。

    再来看这个矩阵的消元,[26620]=[10−31][2602],这就是A=LU,可以发现矩阵L中的项与配平方中未知数的系数有关,而主元则与两个平方项外的系数有关,这也就是为什么正数主元得到正定矩阵。

    上面又提到二阶导数矩阵,这个矩阵型为[fxxfxyfyxfyy],显然,矩阵中的主对角线元素(纯二阶导数)必须为正,并且主对角线元素必须足够大来抵消混合导数的影响。同时还可以看出,因为二阶导数的求导次序并不影响结果,所以矩阵必须是对称的。现在我们就可以计算n×n阶矩阵了。

接下来计算一个三阶矩阵,A=[2−10−12−10−12],它是正定的吗?函数xTAx是多少?函数在原点去最小值吗?图像是什么样的?

  • 先来计算矩阵的顺序主子式,分别为2,3,4;再来计算主元,分别为2,32,43;计算特征值,λ1=2−2,λ2=2,λ3=2+2。
  • 计算xTAx=2x12+2x22+2x32−2x1x2−2x2x3。
  • 图像是四维的抛物面,当我们在f(x1,x2,x3)=1处截取该面,将得到一个椭圆体。一般椭圆体有三条轴,特征值的大小决定了三条轴的长度,而特征向量的方向与三条轴的方向相同。

现在我们将矩阵A分解为A=QΛQT,可以发现上面说到的各种元素都可以表示在这个分解的矩阵中,我们称之为主轴定理(principal axis theorem),即特征向量说明主轴的方向、特征值说明主轴的长度。

A=QΛQT是特征值相关章节中最重要的公式。

上次更新: 2025/06/25, 11:25:50
复数矩阵和快速傅里叶变换
相似矩阵和若尔当形

← 复数矩阵和快速傅里叶变换 相似矩阵和若尔当形→

最近更新
01
帮助信息查看
06-08
02
常用命令
06-08
03
学习资源
06-07
更多文章>
Theme by Vdoing | Copyright © 2022-2025 Geeks_Z | MIT License
京公网安备 11010802040735号 | 京ICP备2022029989号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式