模型示例
一个神经网络的典型训练过程如下:
- 定义包含一些可学习参数(或者叫权重)的神经网络
- 在输入数据集上迭代
- 通过网络处理输入
- 计算 loss (输出和正确答案的距离)
- 将梯度反向传播给网络的参数
- 更新网络的权重,一般使用一个简单的规则:
weight = weight - learning_rate * gradient
LeNet

import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 输入图像channel:1;输出channel:6;5x5卷积核
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 2x2 Max pooling
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# 如果是方阵,则可以只使用一个数字进行定义
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # 除去批处理维度的其他所有维度
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
2
3
4
5
6
7
我们只需要定义 forward
函数,backward
函数会在使用autograd
时自动定义,backward
函数用来计算导数。我们可以在 forward
函数中使用任何针对张量的操作和计算。
一个模型的可学习参数可以通过net.parameters()
返回
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1的权重
2
3
10
torch.Size([6, 1, 5, 5])
2
让我们尝试一个随机的 32x32 的输入。注意:这个网络 (LeNet)的期待输入是 32x32 的张量。如果使用 MNIST 数据集来训练这个网络,要把图片大小重新调整到 32x32。
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
2
3
tensor([[-0.0921, 0.0474, 0.0372, -0.0836, -0.1015, -0.0173, 0.0596, 0.0553,
-0.1055, 0.1675]], grad_fn=<AddmmBackward0>)
2
清零所有参数的梯度缓存,然后进行随机梯度的反向传播:
net.zero_grad()
out.backward(torch.randn(1, 10))
2
注意:torch.nn
只支持小批量处理 (mini-batches)。整个 torch.nn
包只支持小批量样本的输入,不支持单个样本的输入。比如,nn.Conv2d
接受一个4维的张量,即nSamples x nChannels x Height x Width
如果是一个单独的样本,只需要使用input.unsqueeze(0)
来添加一个“假的”批大小维度。
torch.Tensor
- 一个多维数组,支持诸如backward()
等的自动求导操作,同时也保存了张量的梯度。nn.Module
- 神经网络模块。是一种方便封装参数的方式,具有将参数移动到GPU、导出、加载等功能。nn.Parameter
- 张量的一种,当它作为一个属性分配给一个Module
时,它会被自动注册为一个参数。autograd.Function
- 实现了自动求导前向和反向传播的定义,每个Tensor
至少创建一个Function
节点,该节点连接到创建Tensor
的函数并对其历史进行编码。
PyTorch 中的 AlexNet
AlexNet 是 Hinton 和他的学生等人在 2012 年提出的卷积神经网络,以高出第二名 10 多个百分点的准确率获得 ImageNet 分类任务冠军,从此卷积神经网络开始在世界上流行,是划时代的贡献。
AlexNet 特点如下:
- 采用 ReLU 替换饱和激活 函数,减轻梯度消失
- 采用 LRN (Local Response Normalization) 对数据进行局部归一化,减轻梯度消失
- 采用 Dropout 提高网络的鲁棒性,增加泛化能力
- 使用 Data Augmentation,包括 TenCrop 和一些色彩修改
AlexNet 的网络结构可以分为两部分:features 和 classifier。

在PyTorch
的计算机视觉库torchvision.models
中的 AlexNet 的代码中,使用了nn.Sequential
来封装网络层。
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
nn.ReLU(),
nn.MaxPool2d(3, 2), # kernel_size, stride
# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
nn.Conv2d(96, 256, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(3, 2),
# 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽
nn.Conv2d(256, 384, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(384, 384, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(384, 256, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(3, 2)
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39