Geeks_Z の Blog Geeks_Z の Blog
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)

Geeks_Z

AI小学生
首页
  • 学习笔记

    • 《HTML》
    • 《CSS》
    • 《JavaWeb》
    • 《Vue》
  • 后端文章

    • Linux
    • Maven
    • 汇编语言
    • 软件工程
    • 计算机网络概述
    • Conda
    • Pip
    • Shell
    • SSH
    • Mac快捷键
    • Zotero
  • 学习笔记

    • 《数据结构与算法》
    • 《算法设计与分析》
    • 《Spring》
    • 《SpringMVC》
    • 《SpringBoot》
    • 《SpringCloud》
    • 《Nginx》
  • 深度学习文章
  • 学习笔记

    • 《PyTorch》
    • 《ReinforementLearning》
    • 《MetaLearning》
  • 学习笔记

    • 《高等数学》
    • 《线性代数》
    • 《概率论与数理统计》
  • 增量学习
  • 哈希学习
GitHub (opens new window)
  • Class Incremental Learning

    • Survey
      • 术语
      • Data-Centric
        • Direct Replay
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • Generative Replay
        • Data Regularization
      • Model-Centric
        • Neuron Expansion
        • Backbone Expansion
        • Prompt Expansion
        • Parameter Regularization
      • Algorithm-Centric
        • Logit Distillation
        • 2016
        • Feature Distillation
        • Relational Distillation
        • Feature Rectify
        • Logit Rectify
        • Weight Rectify
      • Unclassified
        • 2020
    • 参数隔离
    • 样本回放
    • 正则化
    • Mixed
    • Prompt
    • 增量学习实验设置
  • Paper
  • Class Incremental Learning
Geeks_Z
2023-02-18
目录

Survey

术语

  • NCM:nearest class mean,NCM represents each class as a prototype vector that is the average feature vector of all examples observed for the class so far.[iCaRL] 类中心

Deep Class-Incremental Learning: A Survey (opens new window)

image-20230218105733557

Data-Centric

  • Data Replay
    • Direct Replay
    • Generative Replay
  • Data Regularization

Direct Replay

2022

2021

  • Rainbow Memory: Continual Learning with a Memory of Diverse Samples

  • Continual prototype evolution: Learning online from non-stationary data streams (opens new window)

  • Memory-efficient incremental learning through feature adaptation (opens new window)

  • Memory efficient class-incremental learning for image classification (opens new window)

2020
  • Using hindsight to anchor past knowledge in continual learning (opens new window)
2019
  • Gradient based sample selection for online continual learning
2018
  • Selective experience replay for lifelong learning (opens new window)

  • Riemannian walk for incremental learning: Understanding forgetting and intransigence (opens new window)

  • Experience replay for continual learning (opens new window)

2017
  • icarl: Incremental classifier and representation learning (opens new window) CVPR
  • Prototypical networks for few-shot learning (opens new window)

Generative Replay

[Continual learning with deep generative replay]

[Exemplarsupported generative reproduction for class incremental learning]

[Overcoming catastrophic forgetting for continual learning via model adaptation]

[Learning to remember: A synaptic plasticity driven framework for continual learning]

Incremental learning using conditional adversarial networks

Data Regularization

GEM-[Gradient episodic memory for continual learning] AGEM-[Efficient lifelong learning with a-gem]

Layerwise optimization by gradient decomposition for continual learning CVPR,2021.

Training networks in null space of feature covariance for continual learning CVPR,2021.

Model-Centric

  • Dynamic Networks
    • Neuron Expansion
    • Backbone Expansion
    • Prompt Expansion
  • Parameter Regularization

Neuron Expansion

reinforcement learning[Reinforced continual learning]

Backbone Expansion

  • Der: Dynamically expandable representation for class incremental learning (opens new window) CVPR,2021

  • Foster:Feature boosting and compression for class-incremental learning (opens new window)

  • A model or 603 exemplars: Towards memory-efficient class-incremental learning

Prompt Expansion

Vision Transformer (ViT) Dytox: Transformers for continual learning with dynamic token expansion CVPR,2022

Visual Prompt Learning (VPT)

Parameter Regularization

Algorithm-Centric

  • Knowledge Distillation
    • Logit Distillation
    • Feature Distillation
    • Relational Distillation
  • Model Rectify
    • Feature Rectify
    • Logit Rectify
    • Weight Rectify

Logit Distillation

2016
  • Learning without forgetting (opens new window),ECCV

Feature Distillation

Relational Distillation

Feature Rectify

Logit Rectify

Weight Rectify

Unclassified

2020

Semantic Drift Compensation for Class-Incremental Learning CVPR

上次更新: 2024/07/05, 15:24:13
参数隔离

参数隔离→

最近更新
01
LLM_架构
06-26
02
Transformer_FFN
06-26
03
LoRA变体
06-24
更多文章>
Theme by Vdoing | Copyright © 2022-2024 Geeks_Z | MIT License
京公网安备 11010802040735号 | 京ICP备2022029989号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式