增量学习综述



Data
- Data Replay
- Direct Replay
- Generative Replay
- Data Regularization
基于回放的增量学习的基本思想就是"温故而知新",在训练新任务时,一部分具有代表性的旧数据会被保留并用于模型复习曾经学到的旧知识,因此要保留旧任务的哪部分数据,以及如何利用旧数据与新数据一起训练模型,就是这类方法需要考虑的主要问题。
Direct Replay
Generative Replay
Data Regularization
Model
- Dynamic Networks
- Neuron Expansion
- Backbone Expansion
- PEFT Expansion
- Parameter Regularization
Neuron Expansion
Backbone Expansion
DER
Dynamically Expandable Representation for Class Incremental Learning

FOSTER
Feature Boosting and Compression for Class-Incremental Learning

PEFT Expansion
Prompt
Learning to Prompt for Continual Learning
DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning
Generating Instance-level Prompts for Rehearsal-free Continual Learning
Steering Prototype with Prompt-tuning for Rehearsal-free Continual Learning
CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning
S-Prompts Learning with Pre-trained Transformers: An Occam’s Razor for Domain Incremental Learning
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
Adapter
Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need

Parameter Regularization
Algorithm
- Knowledge Distillation
- Logit Distillation
- Feature Distillation
- Relational Distillation
- Model Rectify
- Feature Rectify
- Logit Rectify
- Weight Rectify
基于正则化的增量学习的主要思想是通过给新任务的损失函数施加约束的方法来保护旧知识不被新知识覆盖,这类方法通常不需要用旧数据来让模型复习已学习的任务,因此是最优雅的一类增量学习方法。 基于正则化的增量学习方法通过引入额外损失的方式来修正梯度,保护模型学习到的旧知识,提供了一种缓解特定条件下的灾难性遗忘的方法。不过,虽然目前的深度学习模型都是过参数化的,但模型容量终究是有限的,我们通常还是需要在旧任务和新任务的性能表现上作出权衡。
Logit Distillation
LwF
Learning without Forgetting

Feature Distillation
Relational Distillation
Feature Rectify
Logit Rectify
Weight Rectify
Survey
Learn or Recall? Revisiting Incremental Learning with Pre-trainedLanguage Models
上次更新: 2025/04/02, 12:03:38